Lagrangian Relaxation - Solving NP-hard Problems in Computational Biology via Combinatorial Optimization

نویسنده

  • Stefan Canzar
چکیده

This thesis is devoted to two NP-complete combinatorial optimization problems arising in computational biology, the well-studied multiple sequence alignment problem and the new formulated interval constraint coloring problem. It shows that advanced mathematical programming techniques are capable of solving large scale real-world instances from biology to optimality. Furthermore, it reveals alternative methods that provide approximate solutions. In the first part of the thesis, we present a Lagrangian relaxation approach for the multiple sequence alignment (MSA) problem. The multiple alignment is one common mathematical abstraction of the comparison of multiple biological sequences, like DNA, RNA, or protein sequences. If the weight of a multiple alignment is measured by the sum of the projected pairwise weights of all pairs of sequences in the alignment, then finding a multiple alignment of maximum weight is NP-complete if the number of sequences is not fixed. The majority of the available tools for aligning multiple sequences implement heuristic algorithms ; no current exact method is able to solve moderately large instances or instances involving sequences exhibiting a lower degree of similarity. We present a branch-and-bound (B&B) algorithm for the MSA problem. We approximate the optimal integer solution in the nodes of the B&B tree by a Lagrangian relaxation of an ILP formulation for MSA relative to an exponential large class of inequalities, that ensure that all pairwise alignments can be incorporated to a multiple alignment. By lifting these constraints prior to dualization the Lagrangian subproblem becomes an extended pairwise alignment (EPA) problem : Compute the longest path in an acyclic graph, that is penalized a charge for entering “obstacles”. We describe an efficient algorithm that solves the EPA problem repetitively to determine near-optimal Lagrangian multipliers via subgradient optimization. The reformulation of the dualized constraints with respect to additionally introduced variables improves the convergence rate dramatically. We account for the exponential number of dualized constraints by starting with an empty constraint pool in the first iteration to which we add cuts in each iteration, that are most violated by the convex combination of a small number of preceding Lagrangian solutions (including the current solution). In this relax-and-cut scheme, only inequalities from the constraint pool are dualized. i te l-0 03 88 52 1, v er si on 1 26 M ay 2 00 9

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

LP Relaxations of Some NP-Hard Problems Are as Hard as Any LP

We show that solving linear programming (LP) relaxations of many classical NP-hard combinatorial optimization problems is as hard as solving the general LP problem. Precisely, the general LP can be reduced in linear time to the LP relaxation of each of these problems. This result poses a fundamental limitation for designing efficient algorithms to solve the LP relaxations, because finding such ...

متن کامل

Lagrangian Relaxation Method for the Step fixed-charge Transportation Problem

In this paper, a step fixed charge transportation problem is developed where the products are sent from the sources to the destinations in existence of both unit and step fixed-charges. The proposed model determines the amount of products in the existing routes with the aim of minimizing the total cost (sum of unit and step fixed-charges) to satisfy the demand of each customer. As the problem i...

متن کامل

Budgeted Matching and Budgeted Matroid Intersection Via the Gasoline Puzzle

Many polynomial-time solvable combinatorial optimization problems become NP-hard if an additional complicating constraint is added to restrict the set of feasible solutions. In this paper, we consider two such problems, namely maximum-weight matching and maximumweight matroid intersection with one additional budget constraint. We present the first polynomial-time approximation schemes for these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008